非同步訊息傳遞是現代分散式系統的基石。它能夠讓服務之間解耦,提高可擴展性,並促進容錯能力。然而,採用這種模式也伴隨著一系列挑戰。在本篇文章中,我們將探討開發人員在使用非同步訊息系統時常見的困難,以及如何應對這些挑戰。

1. 複雜的程式設計模型

採用事件驅動的程式設計模式,需要開發人員在應用程式的設計與架構上進行根本性的轉變。與同步系統不同,在同步系統中,程式邏輯會順暢地從一個方法流向另一個方法,而非同步系統則依賴一系列事件處理器來處理傳入的訊息。

舉例來說,一個簡單的同步方法呼叫:

result = service.process(data)

在非同步系統中會轉變為一個更複雜的流程:

  1. 請求訊息 被建立並發送至 請求通道
  2. 回應訊息 需等待於 回應通道
  3. 關聯識別碼 (Correlation ID) 確保回應對應到正確的請求。
  4. 無效訊息的處理需要 無效訊息佇列 (Invalid Message Queue)

這種分散式的邏輯會增加系統的複雜性,使得開發與偵錯變得更加困難。為了減輕這種負擔,開發人員可以使用 可追蹤的關聯 ID結構化日誌,以及一些框架來抽象化這部分的複雜性。

2. 訊息順序問題

訊息通道通常只保證訊息能夠送達,但不保證訊息的順序。然而,當訊息之間存在依賴關係,例如一系列金融交易或工作流程的步驟時,訊息順序錯亂可能導致不一致的結果。

為了解決這個問題,開發人員可以採取以下策略:

  • 使用 序列號 (Sequence Number) 來重新排列訊息順序。
  • 實作 冪等處理 (Idempotent Processing),確保重複或順序錯亂的訊息不會影響系統狀態。
  • 使用 訊息代理 (Message Broker),例如 Kafka,它能夠確保特定分區內的訊息順序。

3. 處理同步場景

並非所有場景都能夠接受非同步系統的延遲。例如,當用戶搜尋機票時,他們期望立即獲得結果。為了彌合同步與非同步設計之間的差距,可以採用以下方法:

  • 請求/回應模式 (Request/Reply Pattern):將非同步訊息傳遞與同步行為結合,讓請求端在回應到來之前保持等待狀態。
  • 快取 (Caching):使用快取數據來加速回應,後端系統則可以非同步更新。
  • 超時管理 (Timeout Management):為操作設定明確的超時,防止無限等待。

4. 效能考量

訊息傳遞系統本身會帶來一定的額外開銷,例如:

  • 序列化/反序列化:打包與解析訊息的過程會增加延遲。
  • 網路成本:透過網路傳輸訊息需要一定的時間。
  • 處理延遲:事件處理程序需要資源來處理每個訊息。

雖然非同步系統擅長處理小型、獨立的訊息,但如果傳輸大量數據,可能會對系統造成負擔。為此,可以考慮以下優化措施:

  • 批次處理訊息 (Batch Processing) 以減少單個傳輸的開銷。
  • 針對高效能場景,評估如 gRPC 等替代通訊協議。

5. 共享資料庫的挑戰

當多個應用程式使用同一個共享資料庫,並且頻繁讀寫相同的數據時,可能會產生效能瓶頸與死鎖問題,這些問題主要來自於資料庫鎖的競爭。

解決方案包括:

  • 資料分片 (Partition Data):將數據分散到多個分片,以減少爭用。
  • 事件溯源 (Event Sourcing):用事件來替代直接的資料庫寫入,使處理流程更加非同步化。
  • 讀取副本 (Read Replicas):透過副本來承載讀取請求,減輕主資料庫的負擔。

6. 學習曲線與最佳實踐

非同步設計往往會讓開發人員感到困難,因為大多數開發人員的訓練背景來自同步編程,這導致學習曲線較為陡峭,需要明確的指導方針。

為了讓團隊更容易適應非同步系統,可以採取以下措施:

  • 建立 培訓與指導計畫 (Training & Mentorship Programs),專注於非同步設計模式。
  • 採用成熟的 設計模式 (Design Patterns),如發佈/訂閱 (Publish-Subscribe)、命令查詢職責分離 (CQRS)、以及 Saga 模式來處理分散式交易。
  • 使用現有的 框架與函式庫,來降低開發的複雜性,例如 Kafka、RabbitMQ、NATS 等訊息代理工具。

結論

非同步訊息傳遞為分散式系統帶來了巨大的優勢,但它也伴隨著一定的挑戰。透過理解並解決這些問題,例如管理系統的複雜性、確保訊息順序、以及優化效能,開發人員可以構建更具彈性與可擴展性的系統。

從同步思維轉變為非同步思維是一個重要的過程,但只要使用正確的工具與最佳實踐,團隊便能在這種現代架構中茁壯成長。

你在非同步訊息傳遞中遇到過哪些挑戰呢?歡迎在留言區分享你的想法與解決方案!